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ABSTRACT

In earlier reports, cellular acceptors were
studied whose languages are sets of d-graphs, i.e.,
labelled graphs of bounded degree whose arcs at each
node are numbered. This report discusses acceptance
tasks that depend on the concept of d-graph
isomorphism ~- in particular, the task of deciding
whether a d-graph has a d-subgraph isomorphic to a
given d-graph.
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x. Introduction

Cellular acceptors whose languages are sets of d-graphs
(labelled graphs of bounded degree whose arcs at each node
are numbered) were studied in [1-2], where the terminology
and notation used in the present paper are defined. This
paper discusses acceptance tasks that depend on the concept
of d-graph isomorphism -- in particular, the task of deciding
whether a d-graph has a d-subgraph isomorphic to a given d-
graph.

Given two node labelled graphs by ™ (Nl, Al' fl) and

Yy = (NZ' A2, fz) where fl' f2 are the node labelling func-
tions, Yy is isomorphic to Y2 if there exists a bijection b

from N1 to N, such that flln) = fz(b(n)) Vn&Nl and (m,n)eAl

2

iff. (b(m), b(n))tAz. A dl-graph Fl = (Nl’ Ay fl' gl) and a

dz—graph Fz = (NZ' Az, f2, g2) are isomorphic (denoted by

r. = Pz) iff. their underlying graphs U(Fl) and U(Fz) are

1

isomorphic. Here we allow dl # dz. A subgragh'of a d-graph
'= (N, A, £, g) is denoted by (N', A', £|N', g|A') where

N'SN and A'<A and if (m,n)&A' then m&N' and ne&N'. Note that
(N', A', £|IN', g|A') is not necessarily a d-graph, since

some of the nodes may not have exactly d neighbors. However,
we can always attach # nodes so as to make it into a d-graph.
A labelled graph a is isomorphic to I' if a = U(l'), and a is
isomorphic to a subgraph of T' if a = U(I'') for some subgraph
I'' of ' In the following, we will consider only connected

d-graphs.

it
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2. Graph isomorphism

In this section, we will consider acceptance tasks that
depend on graph isomorphism. Specifically, given & labelled
graph o of degree = d, we will find a finite state acceptor
Ma such that (T, Ma’ H) accepts T iff. o is isomorphic to T
and rejects I otherwise.

We first need

Proposition 1. For every integer r>0, there is a finite

state acceptor Mr such that the cellular d-graph acceptor
(5 Mr' H) with distinguished node D accepts all d-graphs T
whose nodes are all within distance r from D in 2r+l steps,

and when it accepts, every node is in a different state.

Proof: Given any d-graph I', the cellular d-graph acceptor
([ Mr’ H) operates as follows: the distinguished node D
sends out a message S which propagates to the nodes at dis-
tance r from D. The paths traveled by S define a spanning
tree of I', and each node is identified uniquely by marking
each node's state with a sequence of arc end numbers which
define the unique path from D to the node. Specifically,
when a neighbor of D receives S, its state is marked with
the number i if it is the ith neighbor of D. It then sends
the message (S,i) to its neighbors. When an unmarked node
m receives the message (S,il,...,ik), kzl, from node n, and m
is the jth neighbor of n, then m marks its state with
(il,...,ik,j) and sends (S,il,...,ik,j) to its neighbors.

If a node receives a message from more than one neighbor

e




simultaneously, it can choose to accept one of them, say the
one sent by the lowest-numbered neighbor. Since the paths
from D to each node are all different, the sequences of
numbers in the states of the nodes are distinct.

If a node m, is marked with (il,i

1
its neighbors, say m

2,...,ir) and one of

27 is still unmarked, then m, is at dis-
tance r+l away from D. A rejection signal is thus sent to D
because the graph contains nodes more than distance r away.
If no rejection signal is received after 2r+l steps, T is
accepted.//

Given a node-labelled graph o of degree = 4, we can
find its diameter r and construct its spanning tree Ta using
the method in Section 1.3.1 of [2]. The height of the span-
ning tree is = r and associated with each node is a level
number. The level numbers of a node and its neighbors differ

by at most 1; this follows from the way the tree is con-

structed. Now we can prove

Proposition 2. For any labelled graph o of degree = 4,

there exists an Ma such that the cellular d-graph acceptor
(r, M , H) with distinguished node D accepts T if o=I' and

rejects I' otherwise.

Proof: M, first simulates the action of Mr' where r is the
diameter of a, in the first r steps. It sends a rejection
signal to the distinguished node D if it finds a node at dis-
tance more than r from D, since in this case T cannot be

isomorphic to a. At the end of step r, every node of T has
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a unique identity represented in its state.

Step r+l+i (QSish) identifies the nodes corresponding
to level k-i nodes of Ta based only on the knowledge that
the node has the right neighbors to serve as its sons in Ta'
In the states of these nodes, the numbers of the nodes that
are to be its descendents are recorded. Thus at the end of
step r+l+h, the nodes indicating that they can be the root
of Ta are saying that the assignmentsin their states are
sure that all the arcs of Ty exist, but the arcs in o and
not in Ty will have to be checked. More specifically,

Step r+l: Each node decides if it can be a level h
node of T, by looking at its label. A node
that is qualified indicates this fact by re-
cording in its state ([nl,id)],...,[(nk,id)]),
n; # nj if i # j, where id is the unique
identity of the node obtained in previous
steps, and tae ni's are the possible level h
nodes it can be. The number k is at most
the number of level h nodes of Ta' so the

length of the state is bounded. All other

nodes are in some neutral state.

Step r+2: Each node looks at its neighbors. If it has
the right level h neighbors to serve as its
sons in Tu and qualify it to be a level h-1

node, then it changes its state to

(Lny40) 0 (myy0 ddyg)eees (nyy oddyy DT,




[(nzl id), (nZl' idzl)'.."(néiz' idziz)]r

[(nk' id), (nkll idkl)l"'l(nkikl idkik)])

Here id # id..V. . and idij # id if § # 3';

1] 1,

id is the unique identity of the node. Each

ij"

[(nj, id)""'(nji.’ idji.)] indicates that
this node can be node nj of Ta' the subtree
of T, at ng consists of nodes njl""'njij’
and they correspond to nodes with identities
idjl""'idji.’ respectively. For each node,
the numbers of level h-1 nodes it can be

is bounded and the possible assignment from
its neighbors to the subtree of T, is also
bounded. Therefore the length of the states
is bounded. All other nodes are in some
neutral state regardless of their previous

states.

tep r+l+i: The qualified level h-i nodes record in
their states the assignment of nodes to serve
as the subtree of T, at the level h-i node
it qualifies to be. Of course an assignment
is made only if no node in the assignment

corresponds to two different nodes of a.




Step r+l+h: The possible root nodes with the assignments
of all the nodes of T, are known. These
assignments are based on the knowledge that
the arcs in Ty exist. Therefore each of
these assignments gives a subgraph of T
isomorphic to Ty

Starting at Step r+h+2, each qualified root node

initiates signals to check each assignment recorded in its
state to make sure that all the arcs in a exist and no other
arcs are present. This is done by transmitting the assign-
ment to each node. If a node not in the assignment receives
the assignment signal, this means that I' has more nodes than

o and it cannot be isomorphic to a; thus a rejection signal

is sent to the distinguished node to reject I'. If a node is
in the assignment, when it receives the signal, it makes sure
that all the arcs incident upon it are connected to the nodes
with the correct identities as in o. Any time a node finds
an arc out of order, it sends a cancellation signal to report
to the root node of this assignment to delete the assignment.
If after 2h steps, the qualified root node finds that it
still has uncancelled assignments, then it can send a success
signal to the distinguished node D. When D gets a success
signal, it accepts. However, if at the end of step
r+l1+h+2h+r no success signal is received by D, this means
there is no successful assignment. This is because either

the assignments made at step r+l+h are all cancelled or there
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is no assignment at all at step r+l+h, since there may be too
few nodes in T, or it is not possible even to find a subgraph
of T isomorphic to Ta' In any case, ' is not isomorphic to

o and I' is rejected.

An alternate method to test for isomorphism is: first
give each node a unique identity as above, but starting at
step r+l, the nodes' identities are transmitted to and
collected by the distinguished node D. At the same time,
the number of non-# nodes in T is counted and compared with
k, the number of nodes in a. If these two numbers are not
equal, D rejectsT; otherwise D sends out k! signals, each
specifying an assignment of the node identities of the nodes
to the nodes of o. These signals propagate from neighbor to
neighbor. As in the other method, each node checks its arcs
as the signals are received and sends cancellation messages
if any incident arc is not as in a. 2r steps after D sent
out the k! messages, if there is still an assignment at D,
then it accepts ', otherwise it rejects. Since counting and
propagation of the messages all take order diameter time,

this method also detects graph isomorphism in diameter time.//
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5 Subgraph isomorphism

3.1 k-level-colored d-graphs

In this section we consider the diameter time sub-
graph matching problem: Given a labelled graph o, find an M
such that (T, Ma’ H) accepts I iff. a is isomorphic to a
subgraph of T in time proportional to the diameter of T.
Unlike the graph isomorphism case, the numker of nodes of
the d-graph T may be arbitrarily large. However, the defini-
tion of Mu depends only on o and not on I'; therefore it is
not possible to give each node of I' a unique identification
as part of its state.

Suppose o has diameter r; if a node n is part of a sub-
graph S isomorphic to a, then all the other nodes of S must be
within distance r from n. We will show that if every node
of T has a different state from any node within distance r
from it, then we can discover whether a is isomorphic to a
subraph of I' in time proportional to the diameter of T.

A d-graph T will be called k-level-colored if the nodes

of T' are colored and any two nodes within distance k from each
other have different colors. For any node n in a d-graph T,
the number of nodes within distance k from it is at most
c(k)=d + d(d-1) + d(d-1)%+---+a(@-1)¥"1. The number of
colors needed for I' to be k-level-colored is no more than

l+c (k). We can assume that the color at each node is part

of the label and thus becomes part of the initial state of

the automaton at the node, and that the color of a node is

its identity.




Proposition 3. Given a labelled graph B with diameter r,

there is a finite state automaton MB such that for any k-level-
colored (kzr) d-graph I', the cellular d-graph acceptor

(T, MB' H) with a distinguished node D accepts I' if 8 = a
subraph of I', and rejects I otherwise, in time proportional

to the diameter of T.

Proof: Given B we can find its spanning tree TB' Let h be
the height of TB' MB works in almost the came way as Ma in
Section 1 except that the first r steps of Ma are not
necessary since each node already has an identity. In the

process of identifying nodes of various levels, no assign-

ments can be made that requires two nodes of B to correspond
to the same identity, because nodes in the same assignment
must be within distance r from each other so that only one
node can have a particular identity. After h+l steps, all
the possible root nodes with the correspondence between node
of TB and the node identities are known. MB again initiates

signals to check for the existence of the arcs in B but not

in ‘1‘6 as M/ did with some slight modifications. The signal
corresponding to each assignment is sent and transmitted from
neighbor to neighbor, but it stops propagating after r steps
so that it will not reach nodes at distance more than r away. é
When a node in the assignment receives the signal, it makes

sure that the corresponding arcs in B incident to it all

exist and are connected to the nodes with the correct identities.

It does nothing if those arcs exist, but if one of the arcs




is out of order, it sends a cancellation signal to the
supposed root node to delete that assignment. Again, this
signal travels only h steps. All the assignments not can-
celled after 2h steps are good. Thus at that point, if a
supposed root node finds that it still has an uncancelled
assignment, it sends a success signal to the distinguished
node D. When D get s a success signal, it accepts. However,
if at the end of step p=h+1+2h+(radius of I' centered at D)
and no success signal is received by D, it means there is

no successful assignment and no subgraph of I' is isomorphic
to B. Therefore we can reject I'. Note that no success
signal reaches D at step p iff. no success signal reaches D
after step p. Therefore at step 1, besides working in the
same way as Ma, MB also sends out a special signal F from D.
A return signal R is sent back to D when F reaches the leaf
nodes as in the spanning tree construction of Section 1.3.1
in [2]. It takes twice the radius of I' for D to receive R
from all of its neighbors. Then D waits for another 3h+l
steps; if no success signal is received, it rejects .//

It should be pointed out here that each uncancelled
assignment represents a subgraph isomorphic to 8. Moreover
there are redundancies because the same subgraph may be
specified by different assignmentswhich correspond to differ-

ent automorphic images of the subgraph.

sl s
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3.2 Trees

Proposition 4. For any k>0, there is a finite state

automaton Mk such that for any d-graph I' which is also a tree,
in time proportional to the diameter of ', the cellular d-
graph automaton (T, Mk' H) k-level-colors the nodes of T,
i.e., the states of nodes within distance k from each other

are distinct.

Proof: Let & = l%] whose |a] = the largest
integer = a. Each node's state will have a component of the
form (i,i;,...,iy) where 0sisk, Oaide V1sj=%, which serves
as the color of the node. At the first step the distinguished
node writes (0,0,0,...,0) in its state and sends this message
to its neighbors. When an uncolored node n receives a
message (i,il,...,ig) from its neighbor m, node n writes
in its state (i+1 (modulo k+1), i2,i3,...,i£,j) if m is the
jth neighbor of n, and n sends this message to its neighbors.
If an uncolored node receives messages from more than one
node simultaneously, it chooses only one of them. When a
node n is colored with (j’jl""'jl)' this says that if D is
the root, n is a node at level (k+l)i+j for some iz20 and
jl""’jl specifies a path from its ancestor at level
(k+1)i+j=-2 if jl # 0. 1If jl is 0, then jh'jh+1"°"j2 is a
path from D where jh is the first nonzero element after jl’

Given any two nodes n; and nj within distance k from
each other, suppose their colors are c(ni) =(hi'il""'i£)

and c(nj) = (hj'jl""’jl) respectively. If hy # h then

j'

c(ni) # c(nj). 1f hi = hj then n; and nj are on the same




level of T with root D because the levels of n, and nj are
(k+1)t1 + hi and (k+1)t2 + hj for some tl,tz; their differ-
ence is =k (otherwise n; is not within distance k from nj),
and this implies t; = t,. Letn be the closest common
ancestor of n, and nj, i.e., no descendent of n is an
ancestor of both n; and nj. n is at equal distance from n;
and nj. The distance between n and n; or nj is = 2 = lEJ:
since otherwise the distance between n; and nj is > k.
Therefore (il""’il) # (jl""’ji) since one contains a

path from n to n. The

i and the other a path from n to n

5
time it takes for the signal from D to reach a node n equals
the distance between D and n. Therefore the coloring pro-
cess takes diameter (I') time.//

Combining the results of Propositions 3 and 4, we see
that if a d-graph ' is a tree, then we can do subgraph
matching in diameter (I') time. However, because of the
structure of trees -- they have no cycles, and between any
two nodes there is only one simple path we can also do sub-
graph matching without first coloring the nodes.

Let T be a d-graph which is also a tree. Then any
labelled graph isomorphic to a subgraph of ' must be a tree.
Let 2 be a tree with root node r and height h. 1In the re-
mainder of this section, we describe a cellular d-graph
automaton (T, Mz, H) which accepts I' iff. Z = a subgraph of

' The action of Mz is similar to the actions of Ma and MB

in the previous sections. Namely, at each step i (lsish+l)




each node n looks at its neighbors to decide if they can
correspond to the sons of a level h+l-i node m in the tree Z.
If they can, n declares itself to qualify as the node m of

Z. The difference is that the nodes do not have distinct
identities any more; rather, we know that T' is a tree. In-
stead of recording the assignments of nodes, each node n's
state simply indicates the level h-i+l node it can be and
the arc end numbers leading to its sons. Note that a node
can correspond to a few different level h-i+l nodes with
different sets of sons. In the next step, the knowledge of
the sons prevents those nodes from serving both as n's father
and son when n corresponds to a particular node m of 2
since n's neighbor can see from n's state whether it was
used as n's son to qualify n as mg of Z.

Claim: At the end of step i (l=ish+l), if a node n's state
indicating that it qualifies as a level h-i+l node m of 2
and its il,iz,...,ij-th neighbors nl,nz,...,nj correspond

to the sons m, ,m ,mj of m in %, then n is the root of a

2,.--
tree* isomorphic to the subtree of Z at m.

Proof: When i=1, the claim is clearly true since the sub-
tree of Z at a leaf node consists of only the node itself.
If the claim is true for i-1 (l<ish+l), then nl,nz,...,nj

are all roots of trees isomorphic to subtrees of Z at

ml....,mj. First note that if n qualifies as corresponding

*This tree is an acylic subgraph of TI.




to m, then n qualifies to be the father of Niseeesn In

jo
the trees isomorphic to subtrees of ml,...,mj, all of the

n,'s (1sksj) do not use n as a son, since otherwise n could

k
not be that nk's father. Moreover, the trees at Nisfysece .

]
are all disjoint since they are all subgraphs of T and T is
a tree. If a node A belongs to both the trees at n, and Ny,
then there exist a sequence of nodes NjAgre-spr A joining
n, to A, and a sequence of nodes n2,bl,...,bk,A joining n,
to A. This means that n,nl,al,...,az,A,bk,...,bl,nz,n is a

cycle, a contradiction. This shows that n is the root of a

tree. This tree is isomorphic to the subtree of Z at m;

this is clear from the fact that the trees at n, are isomorphic

to subtrees at my (1sk=j).//

At the end of step h+l, all the nodes that corres-
pond to the root node of Z are identified. These nodes just
send a success message to the distinguished node D for accep-
tance. If after h+l+height (') steps, no success message is
received by D, it rejects. Again M, can use the same method
as MB of Proposition 3 to decide when to reject.

We have thus proved

Proposition 5. For any labelled tree Z of height h, there is

a finite state automaton MZ such that for any d-graph T which
is a tree, the cellular d-graph automaton (T, M, H) accepts
I iff. T = a subgraph of I', and otherwise it rejects I, in

time proportional to the diameter of T,

In Section 1.2.3 of [2], we showed how a cellular d-




graph automaton recognizes trees in diameter time. Combining

this with the above propdsition, we have the result that for

any tree Z, there is a cellular d-graph automaton that recog-
nizes all the d-graphs which are trees and have subgraphs iso-

morphic to 2.




3.3 k-local-homogeneous d-graphs

In the last section, we exhibited a diameter time
subgraph matching algorithm for trees without appealing to
k-level-coloring. We have been unable to find diameter time
algorithms for general d-graphs. The problems seem to be
due to the existence of cycles in a general d-graph, as

can be seen from the following examples:

Example 1l: Suppose the labelled graph o is

A

and part of T is: A (node m)

2> C (node n)

If the states of the nodes are not different, there seems to
be no way that node n can tell that its third neighbor cannot
serve as its son since it is already used as its ancestor.

Equivalently, there seems to be no way to prevent node m from




serving as two different nodes of a.
Example 2: Suppose we are looking for subgraphs to match

A

B‘é::i::EhC . Suppose that part of T is

(node nl) B C (node n3)

1
r//////////;>1;?;;de n2)

A

How can node ny tell that node n, is not node n, (and thus
not the desired structure) if the states of the nodes are
not different? 1In general, how can a node distinguish the
signals from different nodes? This is the same problem as
in [3, 4) where the automaton cannot tell apart cycles of
lengths 3 and 4.
Let us examine the special properties a tree has:
(L) There are no nontrivial cycles in a tree.
The only cycles are those consisting of a
path and its exact inverse.
(2) There is only one path between any two

points.

In this section, we discuss a generalization of




these properties, and define a class of d-graphs for which

diameter time subgraph matching is possible.




3.3.1 Definition of k-local-homogeneity

At each node n, H(n) = (tl""’td) tells n
that it is the tith neighbor of its ith neighbor. If we
consider a sequence of numbers al,...,aj (1saisd for 1sisj)
at n as a path n = no,nl,...,nj such that n; is the aith

neighbor of n,_ (1sisj)*, then H(n) tells node n the in-

1
verse of any path of length 1. Define HJ (n): pJ -+ Dj such
that if the image of (al,...,aj) is (bl,...,bj) then the in-

verse of the path RARRRAE is b.,b._l,...,bl and we have

J g
a; b, a, b, asy bj—l aj bjg‘
»~— - et me— e o ° & v B (2
n=n ny ny, Ny, e n

k

It is obvious that knowing H® at a node n implies knowing

IR

2 H) at n for any lsjsk.

Proposition 6. For any k>0, there exists a finite state auto-

maton M, such that for any d-graph I', the cellular d-graph

k

automaton (I', M, H) can find H W and record it in its state

in 2k steps.

Proof: Since each node knows its H-function, it can send out
messages in the form of (i;ti) to its ith neighbor (lsisd).

When a node m receives (i;ti) from its tith neighbor, it

*From now on, we will use the notations 'WF=no,...,n." and

"al,...,aj at n" interchangably. J




sends out messages (i,j;ti,tg) to its jth neighbor nj (1=j=d)
where n is the té neighbor of nj. In general, for %<k, when
a node n receives (il'iz""'iﬁ;tl'tZ""'tz) from its tlth
neighbor, it augments the message and sends out
(il’iz""’il’j7tl""’tl'ti) to its jth neighbor (l=j=d)
where n is the tith neighbor of its jth neighbor. If n's jth

neighbor is a # node, it makes a special mark. After step

k, instead of augmenting and sending out new messages, the

messages backtrack, i.e., the message (il,iz,...,ik;jl,jz,...,jk)

travels along the path jk""'jz'jl' (A pointer is kept so
that a message knows which j2 to use next.) At step 2k,

each node n knows fromthe messages it receives that the

image of (il,...,ik) at n under Hk is (jl,...,jk). Hence

the inverse of the path il,...,ik from n is jk,...,jl. If a
path does not reach length k because a # node is encountered,
the node can tell this from the special mark at that
position. Note that since each message only travels distance

k=1 nodes

k away and each node has at most d+d(d-1)+---+d(d-1)
within distance k from it, the number of signals at any

node at each step is bounded.//

Alternate proof: At the first step, each node writes in

its state the inverses of paths of length 1 from it, i.e.,
records its H~function. At the next step, since each node
can see its neighbor's states, it can tell the inverses of
paths of length 2. More specifically, suppose

H(n) = (tl'tz""'td)' H(m) = (51’52""'sd) and m is the




ith neighbor of n. At the end of step 1, n's state has
((1itq), (2;t2),...,(d;td)) and m's state has ‘
((Lisy)s (2isy) ..., (disg)). If t; =3 then i = 55 by the

definition of H. At step 2, part of n's state looks like

this: (i,l:t;,s;), (i,2;t;,8,),...,(i,d;it;,s;). The same
kind of information is gathered from each neighbor of n, i
so that the inverses of paths of length 2 are recorded in
the state of n. Again, if a neighbor is a # node, a special

mark is recorded in the state so that it will not attempt to

extend that path further. Therefore, at each step, we can
use the latest information each node acquired at the pre-

vious step to extend the paths' lengths by 1. At the end

of step k, each node's state has Hk coded in it.//

In a d-graph I', a node n knows all cycles of length up

to k if given a sequence of arc end numbers al,...,aj
(lsajsd, lsjsk), hence a path of length jsk starting from n,
node n knows whether or not this path is a cycle, i.e.,

B S Raeliybeserlig gty = By where n, is the a,the neighbor of

n._1 (1si=j). A node n knows all equivalent paths of total

length up to k if given any two sequences of arc end numbers,

hence two paths from n, with sum o1 their lengths =k, node
n knows if they lead to the same node. I is said to know
all cycles of length up to k or know all equivalent paths
of total length up to k iff. every node in I knows the re-
spective information. The following example shows that knowing

Hk does not imply knowing all cycles of length j nor knowing




T —

all equivalent paths of total length j for some j>2.

Example:
2
1
2
2 1
¥
H(n) = (2,1,3) for every node n and so Hk(n) is the

same for every node. However, the cycles at node A and node
B are quite different. At A, 232 gives a cycle,while at B,
232 is not a cycle. At A, 23 and 1 reach the same node,but

at B, 23 and 1 do not meet.

Proposition 7. A node n knows all cycles of length up to

k iff. n knows all equivalent paths of total length up to k.

Proof: For any d-graph T, there is a cellular d-graph auto-
maton that finds Hk in constant time (depending only on k).
Suppose n knows all cycles of length up to k. Given any two
whose total lengthvs k, n knows Hk; thus it can

paths P.,P

152
invert one of the paths, say the shorter one P2, and append
the inverse of P, to Pl. The result is a sequence of arc end
numbers of length = k. This sequence is a cycle iff. Pl

and P, reach the same node. But n knows all cycles of

2
length up to k, therefore n knows all equivalent paths of

total length up to k.




Conversely, suppose n knows all equivalent paths of

total length up to k. Given a sequence of arc end numbers
(ai) of length = k , n can simply break it at some point
into two, using its knowledge of Hk to find the inverse of
one of them. This yields two paths at n, the sum of their
lengths = length of (ai).s k. (ai) is a cycle iff. these
two paths reach the same node. But n knows all the equi-
valent paths of total length up to k; therefore n knows all
the cycles of length up to k.//

Having the equivalence given by Proposition 7, we can

define a d-graph T to be k-locally-homogeneous if at each

node n of T, H(n) and all cycles of length up to k or all
equivalent paths of total length up to k are known. Clearly,
a d-graph that is a tree is k-locally-homogeneous, since

there are no cycles, and no two distinct paths can be equi-

valent.




3.3.2 Subgraph matching problem for k-locally-homo-
geneous d-graphs

Let w be a labelled graph such that the degrees
of the nodes of w are = d and the diameter of w is r>0%*.
We vill define a deterministic cellular d-graph acceptor
with finite-state automaton Mw that will recognize those k-
locally-homogeneous d-graphs (k>2r) having a subgraph iso-
morphic to w. For each w, taking any one of the nodes as
the ruvot node and using the methods described in [2], a
spanning tree Tw of w can be constructed, where the height
of Tm is hsr.

The diameter time matching of w to a subgraph
of any k-locally-homogeneous d-~graph I' will be done by first

trying to identify the subgraphs of T' isomorphic to Tw'

g

-, TNSTN
. . .V

These subgraphs will be stored in the state of the node

corresponding to the root of Ty in the form of specifying arc
end numbers leading to each node corresponding to a node of
Tw’ Then using homogeneity conditions, the nonspanning

tree edges of w can be checked.

In identifying subgraphs of T = Tw' the action

of Mw is similar to the actions of Ma’ MB and MZ defined

B T e TR

earlier. Namely, at each step i (lsish+l), each node
decides if it can correspond to a node m at level h+l-i of :
Tw by checking if its neighbors can correspond to the sons ;

*If r=0 then w has only one node; subgraph matching then be-
comes the label detecting problem of [2].




Bn.

of m in T . However, the nodes are no longer colored dis-
tinctly and T is not necessarily a tree. Therefore, each
node n records in its state the nodes of Tw that it quali-

fies to be and the arc end numbers leading to the neighbors

corresponding to the sons of n, together with the informa-

tion recorded in each of those neighbors. More specifically, |

Step 1l: Each node checks its label to decide if it can be a
level h node (a leaf node) of T, It then records in its
state a list ([ml], [m2],...,[mj]) of nodes of T that it
gualifies to be. The non level h nodes are in some neutral

state.

Step 2: Each node n with the proper label, and having
neighbors which can correspond to the sons of a level h-1

node, writes in its state:

([mll (alll [mll] ) ’ (al2l [ml2] ) ¥ S ey (aljll [mlj1] ) ] 14

[mzl (aZl'[mZI]) r ey (a2]21[m232])]l st

. 1V

[ms.(asl,[msl]),--.,(asjs, 83

3 (]
where a ¢ # a; if t # t'. Here my My, ... Mg are the level

t!
h-1 nodes of Tw that n can correspond to, and mij are the

[m.. 1)]

PR

means that if n corresponds to node m. . then its ait—th

(lstsji) are

level h nodes of Tw. [mi,(ail,[mil]),...,(ai

neighbor corresponds to node m,, of T where m,
i w i

t t
the sons of m, in T,* This specifies a subgraph of T as

shown below. Obviously, the mi's are not necessarily distinct.

All the other non level h-1 nodes are changed to the neutral




state regardless of what state they were in.

In general, at step i, 1l<ish+l, a node n that cgualifies to
be a level h+l-i level node changes to a state of the form
(Sl,SZ,...,%p) where each Sj specifies a subgraph of T' at n

and Sj = [mj,(bjl,Ajl),...,(b.. .. )] where A., is [m.,]

jlj’Ajij jt jt
or [m"(apl'Aél) ‘e (apS,Aés)] and Ajt is in the state of
the bjt—th neighbor of n.
At step h+l, since Tw has only one node at level 0,
all the nodes that can possibly correspond to the root of a
subgraph isomorphic to Tw have that subgraph recorded in
their states. However, as shown by the following example,

this subgraph is not necessarily a tree.

Example: Let Tw and ' be the graphs shown below.




Amy)  aAmi,)  B(h,,)

The following table summarizes the state changes of

the nodes of T at each step:

Node Step 1 Step 2 Step 3

a5 B b Gl o L B0 ¢ (2B )T,
[my, (1,3,), (3,4,)1)

n, b ([myq, (2, [my D) b

ny b ([my,, (LImy51),(3,[my51)]) b

n, b ([my 5, (1,[my31)0(2, [my,1)]) b

ng (lmyy1, [my,1) b b

ng ([m23]) b b

n, (Imy 1, [my,1) D b

E—

where Az, A3, A4 are the states of Nys Mgy Ny at step 2.

The state of n, shows that there are two subgraphs as shown




below. However, [mo,(l,Az),(Z,A3)] is not a tree, and

therefore cannot be isomorphic to Tw’

vm

0
Yy 2 Dy0
2 1
M g Ml

(mg, (1,2,), (2,4,)]

It is easy to see (by an induction proof) that if the
subgraph S obtained at a node n at step h+l is a tree, then
S is isomorphic to Eoo 3 is a tree iff. it contains no
cycles. Hence, since ' is k-locally-homogeneous, n can tell
which subgraph in its state is not a tree, and can delete
that subgraph from its state at step h+2. All the subgraphs
that remain are trees isomorphic to Tw. [In fact, the task
of cycle checking can be done so that each node declares it-
self to be a level h+l-i node only if its subgraph is a
tree, so that many non-tree subgraphs are deleted before
step h+l.] At step h+3, node n checks to make sure the
edges of w not in g exist, wusing the knowledge it posesses

about k-local homogeneity. For example, suppose my should




be connected to m:i in w, and the tree path in the subgraph
from the root node n to the corresponding nodes of m, and

mj are al,...,ati and bl,...,btj; then node n just has to
make sure that there is an arc end number c such that
al,...,ati,c and bl""'bt. both reach mj. If any non-tree
edge does not exist, that subgraph is deleted from the state
of node n.

If there is a tree left in the state of any node, then
the node sends a success message to the distinguished node
to signal acceptance. If the distinguished node receives no
success message after step h+3+diameter (') it rejects T.
Again the distinguished node can tell that h+3+diameter (')
steps have passed by the same method used in Proposition 3.

We have thus proved

Proposition 8. For any labelled graph w with degree = d and

diameter r, there exists a finite state automaton M such
that for any k-locally homogeneous d-graph I' (k>2r), the
cellular d-graph acceptor (T, Mm’ H) accepts I if w = a sub-

graph of I', and rejects I otherwise, in time proportional

to the diameter of T.




3.4 Homogeneous d-graphs

A two-dimensional array may be regarded as a 4-graph,
provided we assume the boundary (#) nodes are distinct so

that each # node has only one neighbor, i.e.,

l

B4 A—###
| | | is regarded as | /| . The arc ends at each
“B-Lp s,

Ll |1

node are labelled with 1(=N), 2(=W), 3(=S), 4(=E). Each
node n knows the inverse of any path starting from n, since
1 and 3, 2 and 4 are always inverses of one another. Each
node also knows when a path is a cycle by checking if the
number of 1's = the number of 3's and the number of 2's =
the number of 4's. Therefore a two-dimensional array is a k-
locally-~homogeneous d-graph for any kzl. Moreover, all the
k-local-homogeneity conditions at each node are the same in
the sense that if a path from a node exists (no # node is
encountered) then the same criterion determines, for all
nodes, whether or not the path is a cycle.

A d-graph will be called k-homogeneous if all the k-

local-homogeneity conditions are the same for every node of
. If the d-graph is k-homogeneous for every kzl, we call

it simply homogeneous. As indicated above, the two-

dimensional arrays are homogeneous 4-graphs. It is easy to
see, analogously, that any n-dimensional array is a homo-

geneous 2n-graph.




A natural way to specify the homogeneity conditions of
a d-graph is in terms of group generators and relations. We
can regard the d arc end numbers at each node as the gener-

ators. A relation S)8,°**s, = e (where e is the identity)

says that at each node n, the path s is a cycle.

i g
Thus knowing the relations implies knowing all the cycles.

Moreover, the cycles of length 2 at each node are the same.

If sls2 = e then when one end of an arc is numbered with Sl’

the other end of the same arc must be numbered with S,i thus

B gt
1 ALt

group.

This shows that the d generators must form a

Mylopoulos and Pavlidis in [5, 6] described a number
of graphs corresponding to different finitely presented
abelian groups. Any finite subgraph of one of these graphs
(with the appropriate # nodes added to make the degree ex-
actly d at each non-# node) is a homogeneous d-graph. This
is illustrated by the following three examples.

(1) Hexagonal arrays and (semi)-reqular tessellations
10

let 6, = {1,2,3,4,5,6}/{1 *=4, 2" "=5, 3 =6, 13=2,

1
15 = 31 for any 1,3 in 1,2,¢<++,6}}
If 1, 2, 3 denote the directions "right", "above

right", and "above left", then the graph of G1 is the hex-

agonal array shown below:




""‘l’;‘" -

The three regular tessellations and eight semi-
regular (Archimedean) tessellations in the Euclidean plane
as shown on pages 24, 41 and 42 of [7 ] can all be regarded
as homogeneous d-graphs. For example, the tessellation
(4,8,8), which has three polygonal faces surrounding each
vertex, where the numbers of sides of the faces are 4, 8 and
8, can be represented by the generators {1,2,3} and the re-

-1 -1_

lations 1 =2, 3 3, 11lil=e, 13131313=e} if the arc ends

are numbered as follows:




The more complex tessellation (3,4,6,4), which has four
polygonal faces surrounding each vertex, where the numbers
of sides of the faces are 3,4,6, and 4 in cyclic order, can
be represented by the generators {1,2,3,4} and the relations

{1-1=2, 3-1=4, 333=e, 1313=3, 16=e}, if the arc ends are

numbered as
N3 1
14 3k
2
;. 1
TG 2.7 4 351 4 ;
\/e¢ 4 N/4 4/\3 ;)\
2 I 3 4 23 - 3 < 2 1
2la 3! 4 3
1 2 1 2
2|3 . 4]1 213 & 12
2
N/ 4 4/\3 3\/4 3
4 3 4 3
£ 1 {% 1
3 3 2 2 Y32
2 1 1l
s d1
1 2
4 3

(2) t-ary trees

In a t-ary tree each node has t+l neighbors. For nzl

let G, = {1,...,2n}/{i " =i-1]i=2,4,...,2n}
N

o . = {(1,.00,2041)/ ({17 2i-1]i=2,4,...,2n}u{ (2n+#1) "1=2n+1])}
’

Then the graph of Gy 4 is a t-ary tree for t = 2n-1,
r

and the graph of Gé n is a t-ary tree for t = 2n.
’

-




-

I
N
=]

t-ary tree for t
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Note that G2 and G! are rmon-abelian since 23 # 32 in

2
both groups.

(3) Complete graphs

For nzl, let D "= akif1sisn) U (139=e|25§aniu{12" e},

2n+l i

Dynyp = (17 onti|1sisn}Ul (2n+1) Lazns1, 12720, 101 5000 o)
U{ljjIZSjsn}.

It is not hard to show that the graph of G, = {l,...,i-l}/Di, iz3

is Ci' the complete graph with i nodes.

(N
w
[ \N]




In general:

2n+l1°

Cons2’

n+l

Since every homogeneous d-graph is k-localliy-~homogeneous

for all k, the results of Section 2.3 imply

Proposition 9. For any homogeneous d-graph, subgraph match-

ing can be done in diameter time by a cellular d-graph auto-
maton.

It should be pointed out here that when we consider
arrays as homogeneous d-graphs, the notion of direction in

an array is not important in graph isomorphism, namely

If —




- is isomorphic to . and § ey and Pl




3.5 Application: clique finding in d-graphs

In a clique all the nodes are neighbors of each other.
Since every node of a d~graph has at most d non-# neighbors,
the size of any clique in a d-graph is = d+l1. This makes
the clique finding problem in a d-graph much easier than
that in a general graph.

Let us first consider the simple problem of finding

the largest clique that a given node n belongs to. At the

o

first step, each non-# ith neighbor of n marks its state f

with i (lsi=d). At the next step, each neighbor m of n

writes in its state a list il,...,it if the ilth,...,itth
neighbors of n are also neighbors of m (the list may be i
empty). Thus at the third step, n can tell from its neigh-
bors' states which neighbors form cliques with it, and the

sizes of the cliques. It is easy for n to record in its

state the size of a largest clique and the numbers of the

neighbors which are nodes of the largest clique. It is also

not hard to mark the largest clique or even to mark all the
cliques that n belongs to, because the number of such
cliques is = (?) + (g) S SO (g) < 2d. Therefore the time
required to find the cliques at a node is constant.

Now consider the problem of finding the size of a

g maximal clique in a d-graph I' in diameter (of I') time. 1If
| we find the size of the largest clique at each node of T,
one node at a time, and then transmit the maximum of the
sizes to the distinguished node, this takes area time. But

largest clique finding at many nodes simultaneously will




involve difficulties, since the signals from different

nodes are not distinguishable. A better approach is to try
to find subgraphs of I' isomorphic to Cd+1' i.e., cliques of
size d+1; if none exist, then we try subgraphs isomorphic to
Cd, Cd-l""'c3’C2 in order (there are always subgraphs
isomorphic to C, if T is connected and has more than one non-

2
# node). When for some i, a subgraph isomorphic to Ci is

found, i is transmitted to the distinguished node D as the size

of the maximal clique in I'. When attempting to find sub-
graphs isomorphic to Ci (2si=d+1) in diameter time, the
difficulties of subgraph matching in a general d-graph as
discussed in Section 2.1 also arise. However, if I' is homo-
geneous, Or 3-locally-homogeneous or l-level-colored, we can
detect the existence or nonexistence of Ci in diameter (of
I') time. Therefore the size of a maximal clique can be
transmitted and recorded in the state of the distinguished
node of I' in time proportional to the diameter of I, since
there are at most d Ci's to be checked.

When a subgraph isomorphic to C, is identified, the
node n of T corresponding to a special node (say A, the root
of a spanning tree Tci) of Ci can be identified and the sub-
graph isomorphic to Ci can be recorded in n's state.
Therefore it is easy to mark the cliques of I' isomorphic to
C,. Note that if the nodes of Cy have the same label, then

when node n identifies itself as corresponding to node A of

Ci’ there are (i-1l)! different correspondences of Ci to

the same i-1 neighbors of n in I', since each qualifies as




any one of the i-1 nodes of C;- ncan get rid of these re-
dundant assignments by just specifying which i-1 of its
neighbors belong to Ci' It is also straightforward to see
that each node can record in its state the size of the
largest clique it belongs to and which of its neighbors form

such largest cliques.




4. Concluding remarks

Diameter time algorithms for the graph and subgraph
matching problems are presented for trees, k-level-colored
d~-graphs, k-locally-homogeneous d-graphs, and homogeneous d-
graphs. If fast algorithms are found to k-level-color a
d-graph, then we will also have a fast algorithm for sub-
graph matching.

k-local-homogeneity seems somewhat artificial; how-
ever, a special case of it, namely homogeneity, holds for
many important classes of d-graphs.

Homogeneous d-graphs may be considered as a natural
generalization of both arrays and trees. The arc end number-
ing of a homogeneous d-graph is consistent. The description
of the homogeneity conditions is the same at each node. 1In
general, the description is also finite and compact (for ex-
ample using group presentation), so that it can easily be
stored in the finite state automaton at each node of the d-
graph. It would be of interest to further study homogeneous

d-graphs.

L A bl
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